

ELIZADE UNIVERSITY, ILARA-MOKIN

FACULTY OF BASIC AND APPLIED SCIENCES DEPARTMENT: PHYSICAL AND CHEMICAL SCIENCES

PROGRAMME: APPLIED GEOPHYSICS EXAM TITLE: DEGREE EXAMINATION COURSE CODE & TITLE: AGP 206 – INTRODUCTORY GEOMATHEMATICS

TIME ALLOWED: 2 Hrs 30 mins. SEMESTER/SESSION: 2nd SEMESTER / 2020/2021

INSTRUCTIONS:

- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 2 pages including this page.
- 3. Answer any four questions.

- 1. (a) For a Legendre polynomial, $P_n(x)$; evaluate the values for $P_1(x)$ and $P_3(x)$
 - (b) Sketch the graph of the equation $y = x^2 4x + 7$ i.e. for $-3 < x \le 3$ and determine its (i) vertex (ii) intercept at both x and y axes.

20 Marks

2. (a) Determine the Fourier series for a periodic function

$$f(x) = \begin{cases} -2 & -\pi < x < 0 \\ +2 & 0 < x < \pi \end{cases}$$

(b) Sketch the following mathematical functions

(i)
$$f(x) = \begin{cases} 1 & -2 \le x \le 1 \\ 2 & -1 \le x \le 0 \\ 3 & 0 < x < 2 \end{cases}$$
; (ii) $f(x) = \begin{cases} 0 & x < -2 \\ -3 & -1/2 \le x \le 1/2 \\ 1 & x > 1 \end{cases}$

20 Marks

3. The relationship between the voltages applied to an electrical circuit and the current flowing is as shown

X (volt)	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Y(mA)	3.9	4.4	5.8	6.6	7.0	7.1	7.3	7.7

- (a) Plot a scatter diagram of current, y, against amount of voltage, x.
 - (i) Calculate the equation of the least squares regression line of y on x
 - (ii) Estimate the current flow assuming a voltage of 2.0 volts is applied

(b) Determine the product moment correlation coefficient.

20 Marks

- 4. (a) Assuming p = 3i + j k and q = i 4j + 2k determine: (i) $p \cdot q$ (ii) p + q (iii) |p + q| (iv) |p| + |q|
 - (b) Plot the mathematical function $f(x) = -3x^2 + 12x 15$

20 Marks

5. (a) Use the method of inverse to solve the following set of simultaneous linear equations:

$$x + 2y + z = 4$$

 $3x - 4y - 2z = 2$
 $5x + 3y + 5z = -1$

(b) Find the solution using Laplace equation of cylindrical coordinate for a scalar potential field, U with single variable, r and independent of θ .

20 Marks

- 6. (a) Derive the Legendre's equation $(1 x^2) y'' 2xy' + (n + 1) = 0$ for a function G representing an ore body in the shape of a sphere, independent of azimuth angle Φ .
 - (b) Explain the importance of Laplacian coordinates in geophysical interpretation.

20 Marks